Upper bound for product of two medians.

Problem 5291,SSMJ February 2014, Proposed by Arkady Alt.

Let m_{a}, m_{b} be medians of a triangle with sidelengths a, b, c. Prove that

$$
m_{a} m_{b} \leq \frac{2 c^{2}+a b}{4} .
$$

Solution 1.
Since $m_{a}^{2}=\frac{2\left(b^{2}+c^{2}\right)-a^{2}}{4}, m_{b}^{2}=\frac{2\left(c^{2}+a^{2}\right)-b^{2}}{4}$ then
$16\left(\left(\frac{2 c^{2}+a b}{4}\right)^{2}-m_{a}^{2} m_{b}^{2}\right)=\left(2\left(b^{2}+c^{2}\right)-a^{2}\right)\left(2\left(c^{2}+a^{2}\right)-b^{2}\right)-$
$\left(2 c^{2}+a b\right)^{2}=2\left(\left(a^{2}-b^{2}\right)^{2}-c^{2}(a-b)^{2}\right)=$
$2(a-b)^{2}(a+b+c)(a+b-c) \geq 0$.
Solution 2.

Applying Ptolemy's Inequality to quadrilateral (trapezoid) $A K M B$ we obtain $B K \cdot A M \leq A B \cdot M K+A K \cdot B M \Leftrightarrow m_{a} m_{b} \leq c \cdot \frac{c}{2}+\frac{b}{2} \cdot \frac{a}{2} \Leftrightarrow m_{a} m_{b} \leq \frac{2 c^{2}+a b}{4}$.

